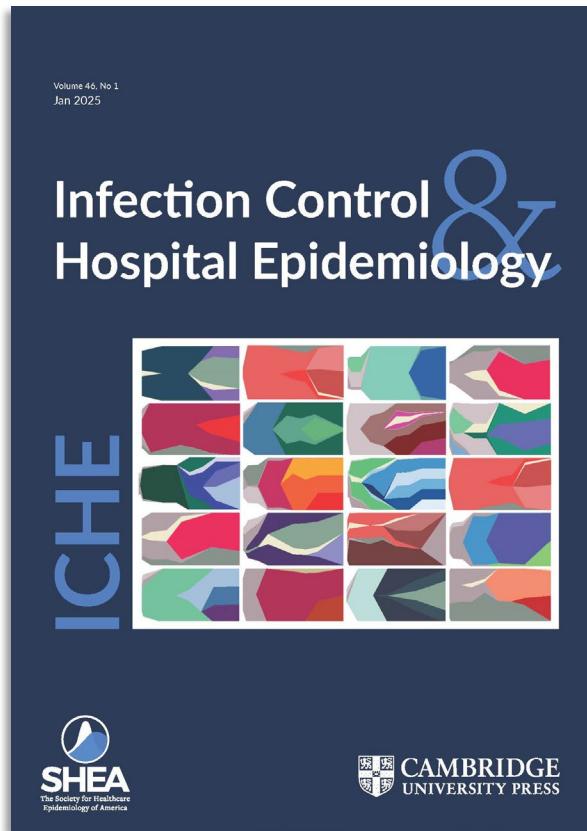


SAFE HEALTHCARE FOR ALL

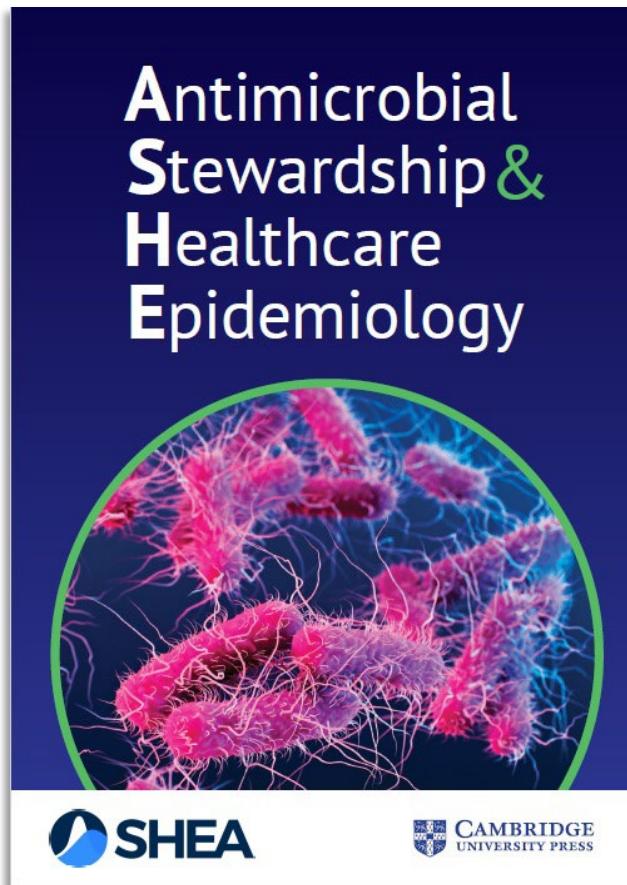


Music:

www.bensound.com

ICHE Journal

Infection Control & Hospital Epidemiology publishes scientifically authoritative, clinically applicable, peer-reviewed research on control and evaluation of the transmission of pathogens in healthcare institutions and on the use of epidemiological principles and methods to evaluate and improve the delivery of care. Major topics covered include infection control practices, surveillance, antimicrobial stewardship, cost-benefit analyses, resource use, occupational health, and regulatory issues.


www.cambridge.org/iche

SAFE HEALTHCARE FOR ALL

Music:
www.bensound.com

ASHE JOURNAL

High quality articles across the full spectrum of antimicrobial stewardship and healthcare epidemiology.

Exceptional author experience through constructive peer review, competitive turnaround times, immediate online publication, a streamlined production process, and social media promotion.

Global, **open access journal**, bringing the widest possible impact, reach and discoverability of your research.

www.cambridge.org/ashe

SAFE HEALTHCARE FOR ALL

Music:
www.bensound.com

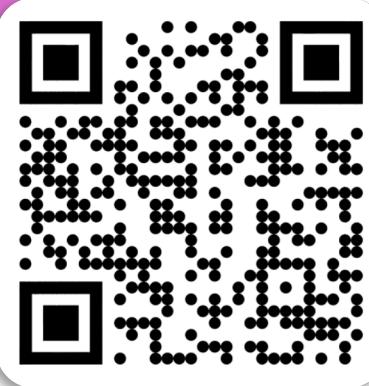
TUNE IN TO SHEA's PODCASTS

AVAILABLE ON:

Online ID Fellows Course

Primer on Healthcare Epidemiology, Infection Control & Antimicrobial Stewardship

SCAN TO
LEARN MORE



LEARNINGCE

SHEA Online Education Center

SCAN HERE
to explore SHEA's
online education!

UPCOMING PROGRAMS & ACTIVITIES

Courses/Webinars

Diagnostic Stewardship Programs: From Concept to Implementation
January 26, 2026 @ 2:00 – 3:00 pm ET

COMING SOON

LearningCE Course

You Can Help! Improving Antibiotic Stewardship and Infection Prevention in Nursing Homes

A new bite-sized education program designed for Long Term Care staff coming January 30th, 2026!

LEARNINGCE
SHEA Online Education Center

**SHEA
SPRING**

2026

Save the Date

APRIL 7- APRIL 10
CHICAGO, IL

Connect with SHEA

@SHEA_Epi

facebook.com/SHEApreventingHAs

linkedin.com/company/shea

SHEA Webinar

Town Hall 2026

Music:

www.bensound.com

Housekeeping

- Technical difficulties? Visit: <https://support.zoom.us>
- Webinar recording, PowerPoint presentation, and references available on learningce.shea-online.org
- Streaming Live on SHEA's Facebook page
- Zoom Polling, Q&A & Chat

SAFE HEALTHCARE FOR ALL

Music:
www.bensound.com

January Town Hall Panelists:

Dr. Marci Drees
ChristianaCare

Dr. Katie Passaretti
Advocate Health

Dr. Chris Nyquist
Children's Colorado

Dr. Tom Talbot
Vanderbilt University

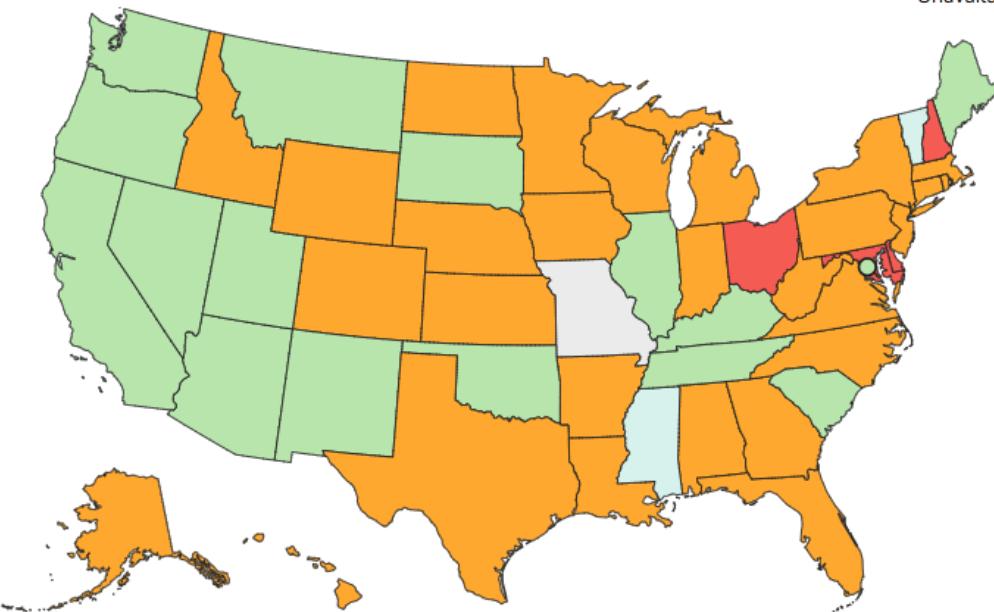
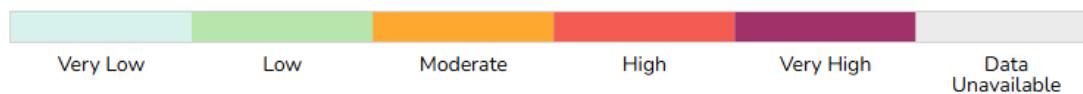
Invited Panelist:

Jane Siegel, MD

California Department of Public Health (2018 – 2024)

Respiratory Viruses in Healthcare: Practical Strategies and Persistent Questions

January 2026 Town Hall



January 2026 Town Hall Background

- Current respiratory virus epidemiology in US
- Important papers/Issues
 - Influenza A H3N2 K variant
 - Alterations to CDC immunization recommendations and impact on healthcare-associated viral respiratory infections (HAVRI)
 - Recent papers of note of HAVRI

Respiratory Virus Activity Levels

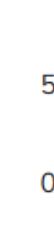
Acute Respiratory Illness

U.S. territories

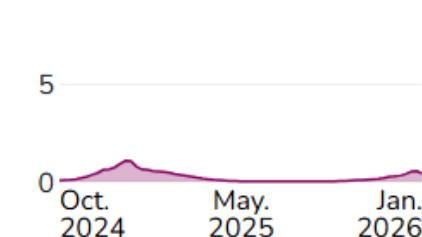
Emergency Department Visits for Viral Respiratory Illness

Weekly percent of total emergency department visits associated with COVID-19, influenza, and RSV. Refer to [data notes](#) for more details.

Emergency department visits in the United States


COVID-19

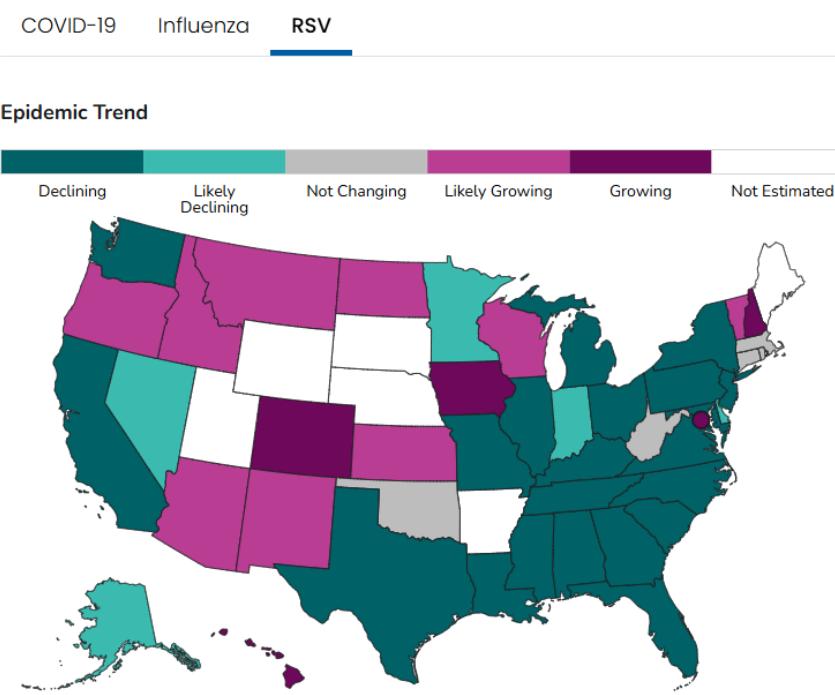
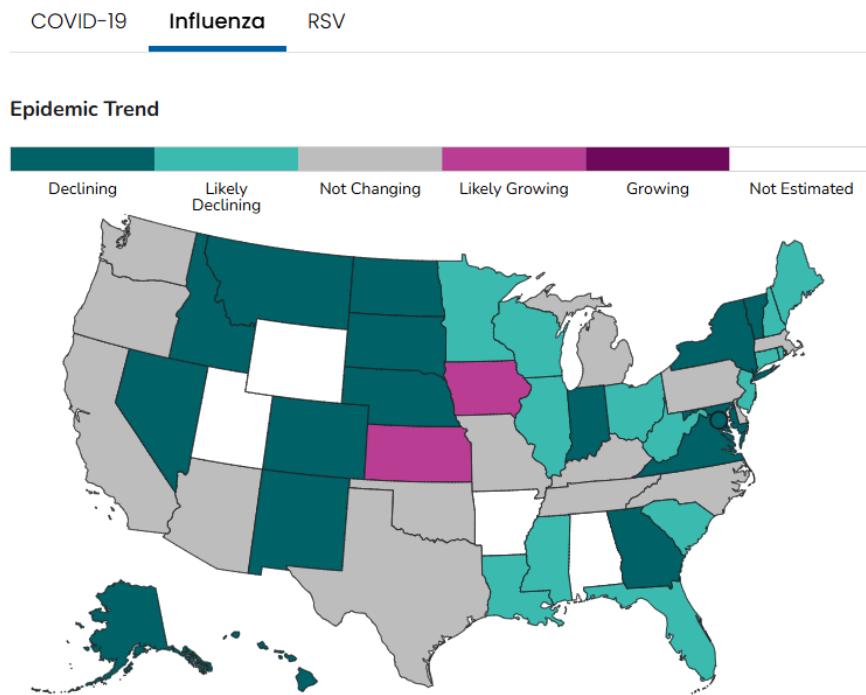
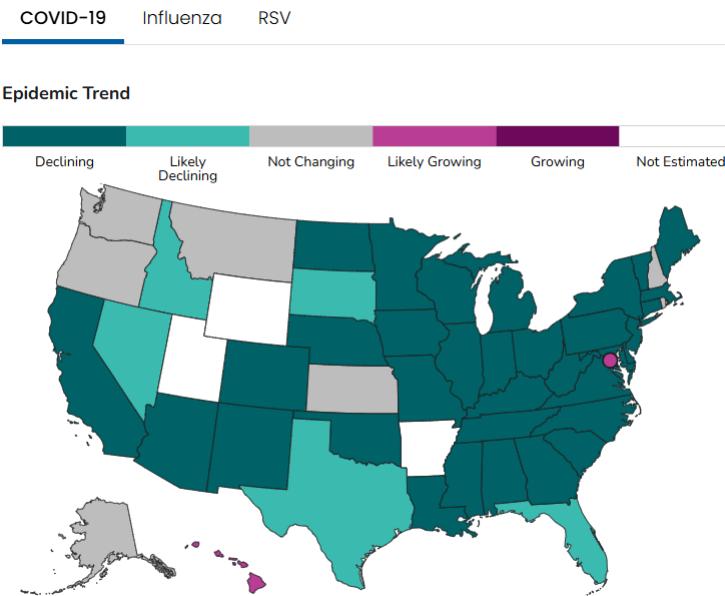
10% of visits


Influenza

10%

RSV

10%

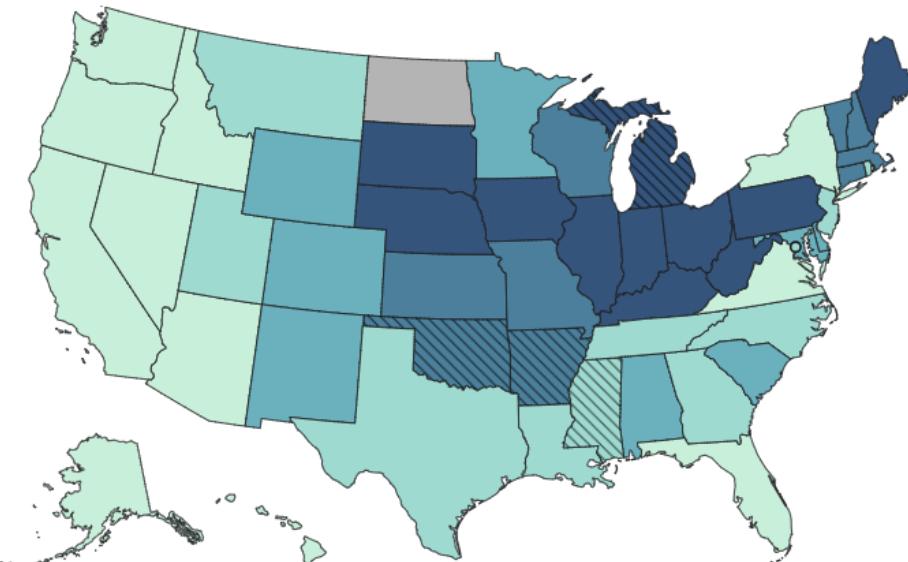
Data last updated on January 14, 2026 and presented through January 10, 2026. [View this dataset on data.cdc.gov](#).

Epidemic Trends

CDC uses data from emergency department visits to model epidemic trends. This model helps tell whether the number of new respiratory infections is growing or declining in your state. While this model tells us the trend, it does not tell us the actual number of current infections with SARS-CoV-2 (the virus that causes COVID-19), influenza virus, or RSV. Refer to [data notes](#) for more details.

Wastewater Map

Wastewater (sewage) can be tested to detect traces of infectious diseases circulating in a community, even if people don't have symptoms. You can use these data as an early warning that levels of infections may be increasing or decreasing in your community.


COVID-19 [wastewater trends](#) may differ from some health outcome findings, such as hospitalization trends, as COVID-19 is [causing severe disease less frequently](#) than earlier in the pandemic.

COVID-19 Influenza A RSV

Wastewater Viral Activity Level

Limited Coverage*

U.S. territories

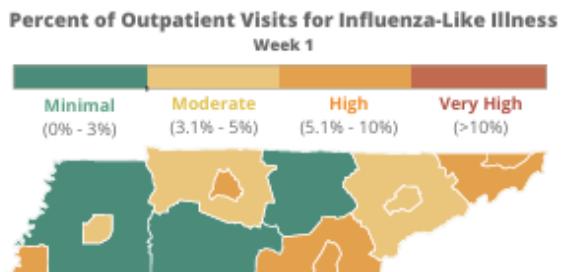
GU

VI

https://www.cdc.gov/respiratory-viruses/data/activity-levels.html#cdc_data_surveillance_section_7-data-notes

TENNESSEE INFLUENZA

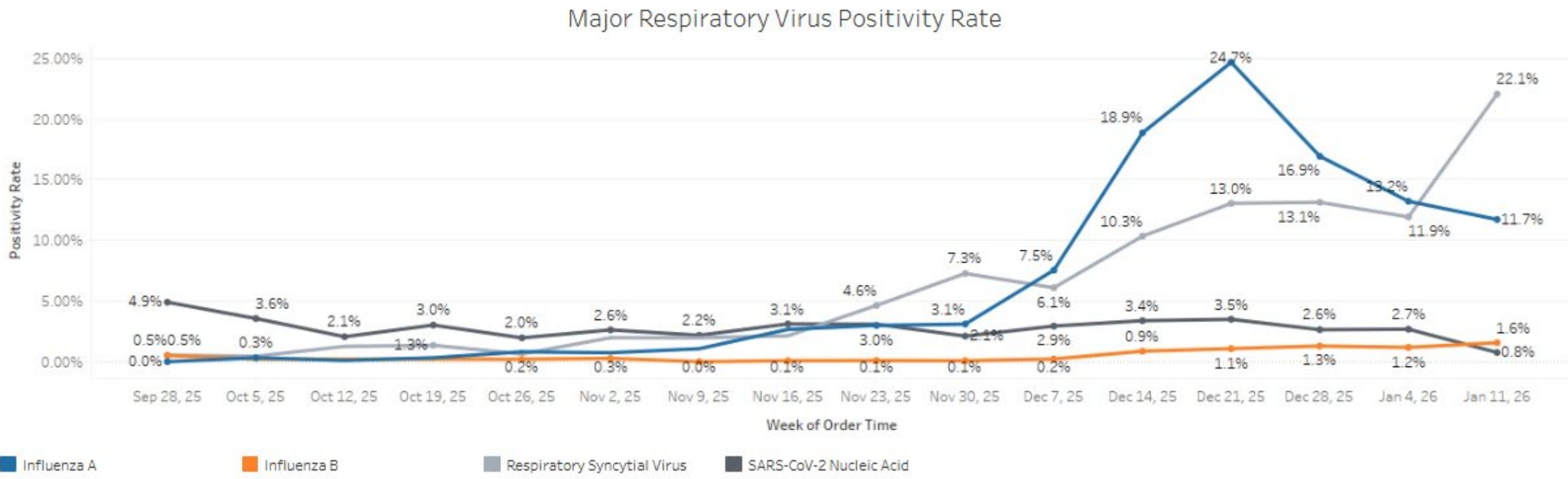
WEEKLY REPORT


WEEK
1

January 4, 2026 - January 10, 2026

INFLUENZA ACTIVITY SNAPSHOT

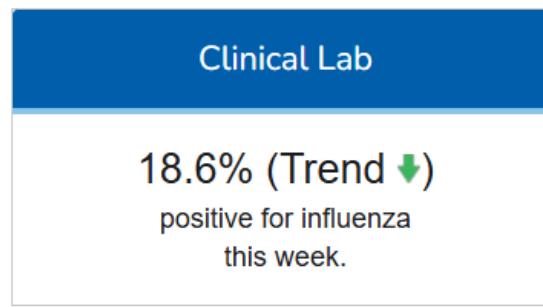
SURVEILLANCE INDICATOR	TREND	CURRENT WEEK	PREVIOUS WEEK
ILLNESS Percentage of outpatient visits due to influenza-like illness (ILI)	▼	6.3%	8.8%
LABORATORY Percentage of positive specimens & predominant strain of influenza	▼	37.5%	47.7%
OUTBREAKS 2 or more ill persons of a shared setting		2	17
DEATHS Newly reported* and season total pediatric influenza-associated deaths in TN		0	0
<small>*Deaths are reported publicly once the public health investigation is complete and cases have been confirmed. The week of reporting may not reflect the actual week of death.</small>		NEWLY REPORTED during week of January 4, 2026	SEASON TOTAL since September 28, 2025


INFLUENZA-LIKE ILLNESS (ILI)

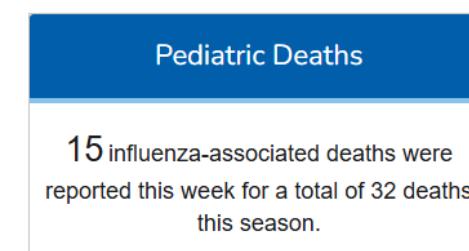
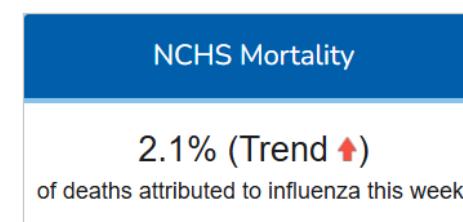
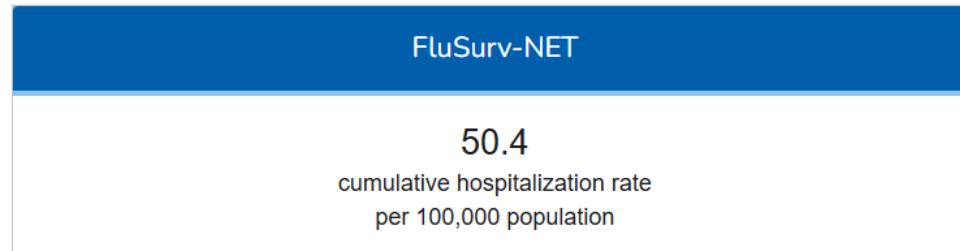
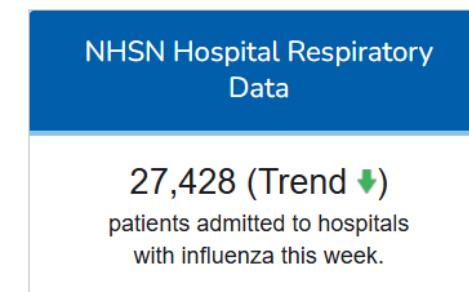
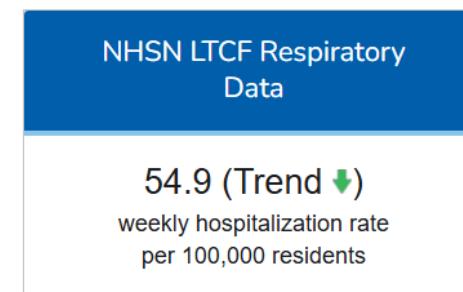
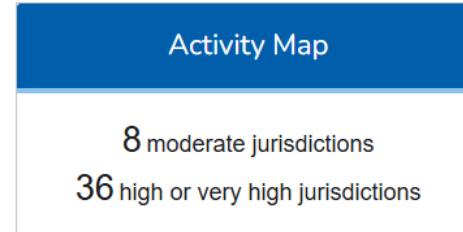
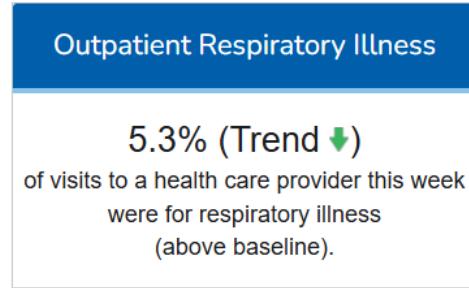
The U.S. Outpatient Influenza-like Illness Surveillance Network (ILINet) monitors outpatient visits for respiratory illness referred to as influenza-like illness (ILI). Tennessee has approximately 100 sentinel providers across the state that contribute this data weekly from a variety of healthcare settings such as primary care, pediatrics, county health departments, student health centers, and emergency departments.

ILI is defined as a fever plus cough or sore throat, not laboratory-confirmed influenza. Therefore these data may capture respiratory illness visits due to infection with any pathogen that can present with similar symptoms, including influenza, SARS-CoV-2, and RSV.

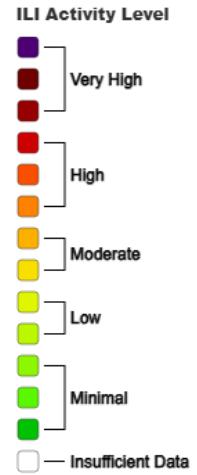
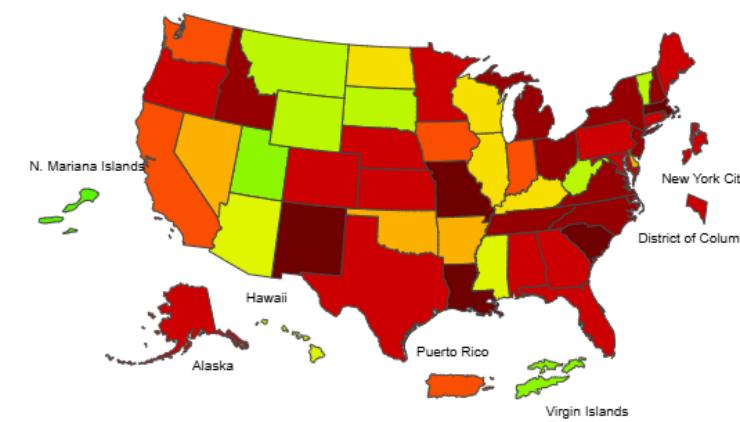
TN State Average	6.3%
Chattanooga/Hamilton County Metro	7.6%
East Region	4.6%
Jackson/Madison County Metro	5.9%
Knox County Metro	4.4%
Memphis/Shelby County Metro	7.6%
Mid Cumberland Region	5.6%
Nashville/Davidson County Metro	6.4%
Northeast Region	6.4%
Southeast Region	7.1%
South Central Region	0.5%
Sullivan County Metro	8.0%
Upper Cumberland Region	1.1%
West Region	2.2%

PAHO issues alert on simultaneous circulation of seasonal influenza and respiratory syncytial virus in the Americas

Weekly US Influenza Surveillance Report: Key Updates for Week 1, ending January 10, 2026



Viruses

Illness

2025-26 Influenza Season Week 1 ending Jan 10, 2026

Influenza A H3N2 K variant

Virus Subtype or Lineage	Genetic Characterization				
	Total No. of Subtype/Lineage Tested	HA Clade	Number (% of subtype/lineage tested)	HA Subclade	Number (% of subtype/lineage tested)
A/H3	547				
		2a.3a.1	547 (100%)	J.2	2 (0.4%)
				J.2.2	5 (0.9%)
				J.2.3	20 (3.7%)
				J.2.4	23 (4.2%)
				K	497 (90.9%)

New 'super flu' strain concerns epidemiologists. Here are the symptoms

This 'super flu' could cause widespread serious illness, health experts say

"Superflu" or same old flu? How subclade K influenza is playing out worldwide

A fast-spreading strain of influenza A (H3N2), known as subclade K, has fuelled headlines warning of a possible "superflu". The reality is more nuanced, scientists say.

- New emerged subgroup; dominant circulating form (Europe/Japan)
- Associated with early starts to flu season
- Carries mutations c/w vaccine strain
- No evidence that can bypass immunity (vax or past infxn) or causes more severe illness
- Current vaccine appears to provide meaningful protection (adults 32-39%; kids 72-75% effective)

FOR IMMEDIATE RELEASE

January 5, 2026

Contact: HHS Press Office

202-690-6343

[Submit a Request for Comment](#)

CDC Acts on Presidential Memorandum to Update Childhood Immunization Schedule

WASHINGTON, D.C. — JANUARY 5, 2026 — Deputy Secretary of Health and Human Services Jim O'Neill, in his role as Acting Director of the Centers for Disease Control and Prevention (CDC), today signed a [decision memorandum* \[PDF, 894 KB\]](#) accepting recommendations from a [comprehensive scientific assessment \[PDF, 1.05 MB\]](#) of U.S. childhood immunization practices, following a directive from President Trump to review international best practices from peer, developed countries.

<https://www.hhs.gov/press-room/cdc-acts-presidential-memorandum-update-childhood-immunization-schedule.html>

AAP Opposes Federal Health Officials' Unprecedented Move to Remove Universal Childhood Immunization Recommendations

ACP Issues Dire Warning: Adopting Vaccination Schedules Based on Those Used by Other Countries Will Put U.S. Lives at Risk

PRESS RELEASES

AMA statement on changes to childhood vaccine schedule

IDSA and over 200 health organizations urge Congress to conduct oversight of changes to vaccine schedule

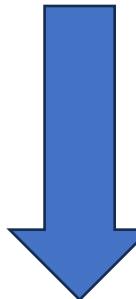
Joint Letter on US Childhood Immunization Schedule

Important Highlights

SHEA Joins National Call for Congressional Oversight on Abrupt Childhood Vaccine Schedule Changes

On January 5, 2026, the U.S. Department of Health and Human Services (HHS) [announced](#) significant changes to the recommended childhood immunization schedule—changes that were not based on credible scientific evidence and were made without the transparent public process that such decisions demand. Among the most concerning revisions, federal health officials are no longer recommending the influenza vaccine for children, and the new schedule appears to mirror guidance used in Denmark rather than evidence-based U.S. standards.

In response, SHEA joined 230 medical professional societies in [signing a letter](#) urging Congress to conduct swift and robust oversight into this decision. The letter calls for an investigation into:

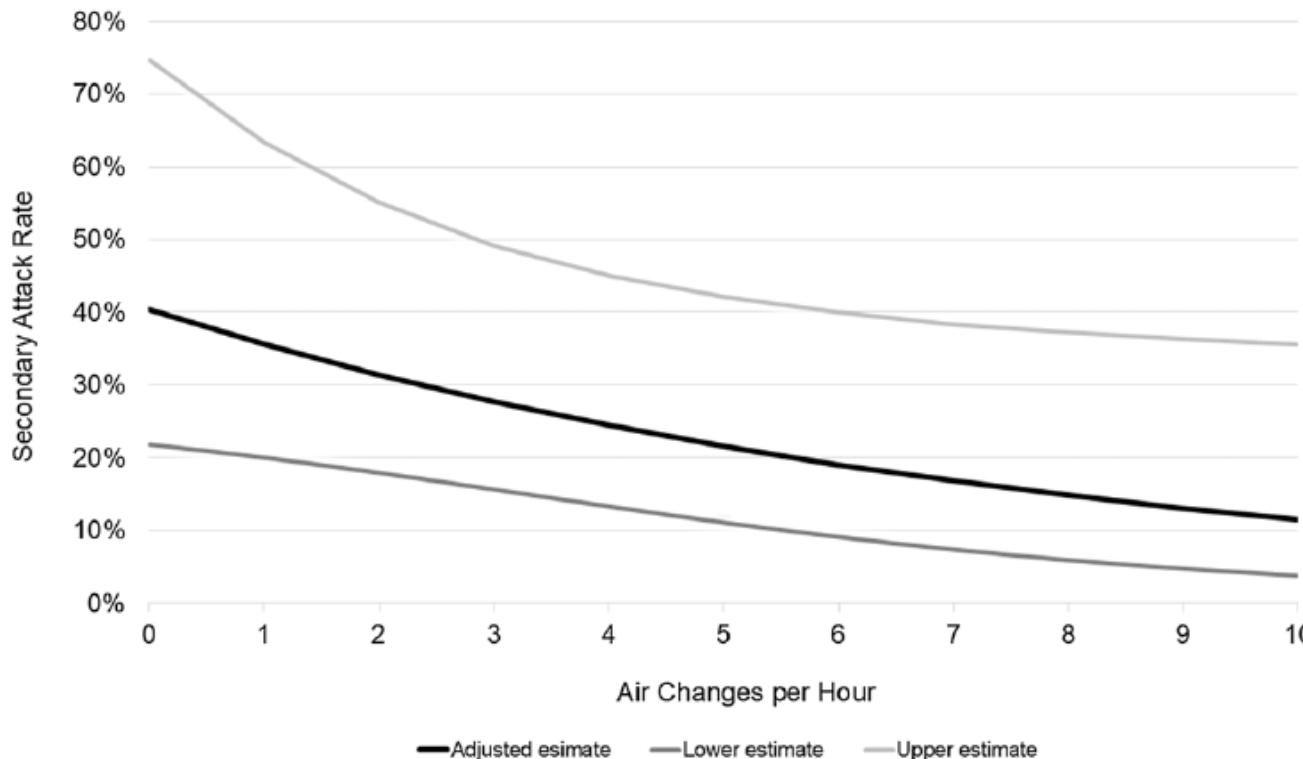

- Why the schedule was changed without scientific justification
- Why credible evidence was disregarded
- Why the Advisory Committee charged with advising the HHS Secretary on immunizations did not address these changes during its public meetings

HHS's decision to dismantle a well-established, evidence-based childhood vaccine schedule threatens to create confusion for families and healthcare professionals and could leave more children vulnerable to serious vaccine-preventable diseases.

SHEA and its partners emphasize that any changes of this magnitude must occur through a transparent, public process where the underlying scientific data is disclosed and rigorously reviewed by experts. Anything less undermines public trust and jeopardizes the health of our communities. [Log into MySHEA](#) to read a detailed analysis of this policy change.

Trump Administration Changes to U.S. Pediatric Vaccine Recommendations, as of January 5, 2026

Disease(s)/Vaccine	Pre-2025	As of Jan 2026	Change (Y/N)
COVID-19*	Routine	SCDM	Y
Influenza**	Routine	SCDM	Y


Unvaccinated patients = Potential vectors for HAVRI

COVID-19 still causes severe disease, but up-to-date vaccines are effective, new research shows

- EuroSAVE Network (WHO/Country Collaboration)
- Enhanced surveillance for ARI in hospitals
- Examined May 2023-May 2024 ARI hospitalizations
- SARS-CoV-2 caused 10% (only 3% had COVID vax w/in past 12 mos)
- Kosovo 3 yr study: UTD vax = 72% effective preventing hosp
- 6 country study: recent (6 mos) vax prevent 60% of hospitalizations

Risk mitigation of shared room ventilation and filtration on SARS-CoV-2 transmission: a multicenter test-negative study

Victoria Williams MPH¹, Kevin L. Schwartz MD, MSc^{2,3,4}, Kevin Brown PhD^{3,4} , Matthew Muller MD, PhD^{5,6}, Jeff Powis MD, MSc^{5,7}, Daniel Ricciuto MD^{5,8}, Alexander Kiss PhD¹, Mark Downing MD, MHSc², Sharon Sukhdeo MD, MSc^{1,5} , Thomas Dashwood MD^{5,7}, Jacob Romano BSc⁸, Rob Kozak PhD¹, Lorraine Maze dit Mieusement RN, MN¹ and Jerome A. Leis MD, MSc^{1,4,5,9}

Figure 2. Estimated SARS-CoV-2 secondary attack rate along with 95% confidence intervals in shared hospital room, per number of room air changes per hour (ACH) after adjustment for other confounders.

Genomic epidemiology of healthcare-associated respiratory virus infections in Pittsburgh, Pennsylvania, 2018–2020

Vatsala Rangachar Srinivasa MPH^{1,2,3} , Marissa P. Griffith BS^{1,2}, Alexander J. Sundermann DrPH^{1,3}, Emma Mills BS², Nathan J. Raabe MPH^{1,2,3}, Kady D. Waggle MS^{1,2}, Kathleen A. Shutt MS^{1,2} , Tung Phan MD, PhD⁷, Anna F. Wang-Erickson PhD^{3,5,6}, Graham M. Snyder MD, MS^{2,4} , Daria Van Tyne PhD² , Lora Lee Pless PhD^{1,2,3,4} and Lee H. Harrison MD^{1,2,3,4}

Table 2. Summary of genetically related clusters

Cluster	No. Patients	Hospital	Epidemiologic link	Virus	Time between first and last specimen (days)
1	5	PH (n = 4) AH-1 (n = 1)	PH: Overlapping stay	Rhinovirus C	8
2	2	PH	Shared unit	Rhinovirus A	12
3	2	PH (n = 1) AH-2 (n = 1)	Unknown	Rhinovirus A	12
4	2	PH (n = 1) AH-2 (n = 1)	Unknown	Rhinovirus A	0
5	2	PH (n = 1) AH-1 (n = 1)	Unknown	Rhinovirus A	2
6	2	PH (n = 1) AH-2 (n = 1)	Unknown	Rhinovirus B	5
7	4	PH (n = 3) AH-1 (n = 1)	PH: Shared unit AH-1: Unknown	RSV B	55
8	2	PH (n = 1) AH-2 (n = 1)	Unknown	RSV A	33
9	3	AH-1	Shared unit	RSV B	8
10	4	PH (n = 1) AH-1 (n = 1) AH-2 (n = 2)	AH-2: Shared unit PH/AH-1: Unknown	Influenza A virus	25
11	2	AH-1	Shared unit	Influenza A virus	4
12	2	PH (n = 1) AH-1 (n = 1)	Unknown	HMPV A2	0
13	2	AH-1	Unknown	HMPV A2	32
14	2	PH	Common provider	HMPV B1	9

PH, Pediatric hospital; AH-1, Adult hospital 1; AH-2, Adult hospital 2; RSV, respiratory syncytial virus; HMPV, human metapneumovirus

Viable viruses in airborne particles detected during cough by participants with acute respiratory viral infections

Tay GTP et al *J Hosp Infect*
2025;164:18-26

The role of spatial distance in SARS-CoV-2 nosocomial transmission

Illingworth CJR et al *J Hosp Infect*
2025;166:71-81

Impact of rapid screening of respiratory viral infections on patient management in a healthcare facility

Cambien G et al
J Hosp Infect
2026;167:192-98

The burden of healthcare-associated viral infections in hospitalized children

Baxter J et al
J Hosp Infect
2026;in press

Lim LL et al *AJIC*
2025;53:1091-99

Vaccination coverage outcomes and health care organization program implementers' experiences after introduction of a health care worker influenza vaccination mandate in Victoria, Australia, 2022-2023

Huang FS et al *AJIC*
2025;53:1350-53

Effectiveness of COVID-19 vaccination to prevent health care personnel absences: A single site experience

Bucher D et al *AJIC*
2025;53:1347-49

Trends in rhinovirus/enterovirus health care-associated infections at a large academic hospital from July 2018 to June 2024

Gagnon J et al *AJIC*
2026; in press

Effectiveness of using full personal protective equipment in reducing the transmission of SARS-CoV-2 in health care workers: A systematic review

HAVRI: IP Challenges

- Implementing facility masking
 - What metrics? What thresholds? Implementation issues
- Applying transmission-based precautions in non-acute settings
- Virus-specific vs virus-agnostic approaches
- Ventilation challenges

Key Points about Preventing Respiratory Virus Infections in Long Term Care Facilities

Jane D. Siegel, MD

1/19/26

How Various Groups within a Healthcare Facility Contribute to Preventing Infection

Elements of a LTCF respiratory virus prevention and control plan

- Vaccination
- Resource Allocation
- **Source Control Masking**
- Education
- Ventilation and Filtration of Indoor Air and Isolation Areas (regular maintenance)
- Active daily monitoring for respiratory Illness during periods of increased community activity
- Management of HCP with Respiratory Symptoms or COVID-19 Exposures
- **Testing**
- Isolation, Transmission-Based Precautions, Cohorting
- During increased community activity or outbreak: screen visitors for signs and symptoms
 - Notify LHD if outbreak
- **Treatment (influenza, COVID-19), chemoprophylaxis (influenza)**

www.cdc.gov/long-term-care-facilities/hcp/respiratory-virus-toolkit/

www.cdph.ca.gov/Programs/CHCQ/HAI/CDPH%20Document%20Library/CA_RecsPrevControl_RespVirus_SNFs.pdf (2025-2026)

Multisociety guidance for infection prevention and control in nursing homes. Infection Control & Hospital Epidemiology (2025), 46, 1069–1096.

[doi:10.1017/ice.2025.10252](https://doi.org/10.1017/ice.2025.10252)

VENTILATION IN HEALTHCARE SETTINGS

In healthcare settings, ventilation is important because it helps remove things from the air that we don't want to breathe in - like small virus particles. Good ventilation improves air quality and reduces the risk of germs spreading.

WHAT TO KNOW

Understand what an air change is and why recommended air changes per hour are important in healthcare.

- An air change means the air in a room is replaced with new air.
- Air changes are usually measured by the hour - air changes per hour (ACH).
- In healthcare facilities, nearly every type of room has a recommended number of ACHs to help reduce the risk of germs spreading among patients and staff.

Respect wait times to allow the air in rooms to clear.

- The infection prevention or clinical leaders in your area, like your nurse manager, will use the ACH to figure out how long a room should sit empty after a patient with a possible or confirmed respiratory infection has left.
- It is okay to enter a room before the air is completely cleared, including while the patient is still there, if you use the recommended personal protective equipment (PPE).

Ask before making changes to the ventilation in a room.

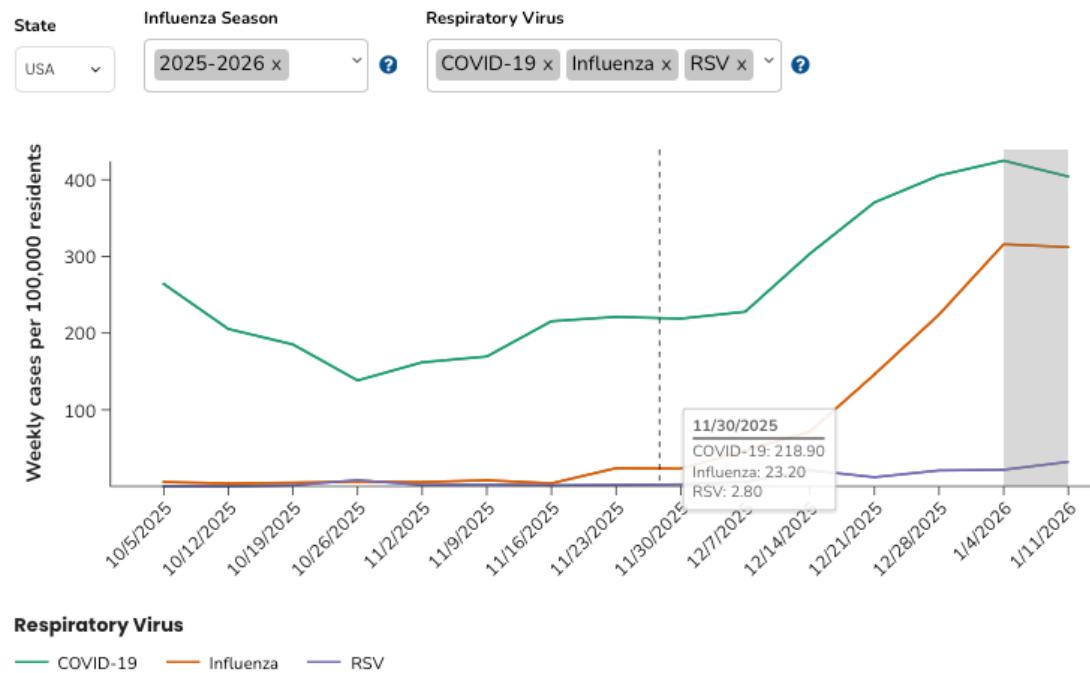
- Rooms are often connected in healthcare facilities.
- Making a change to the ventilation in one room - like opening a window or closing vents to adjust temperature - can change the ventilation in other places, too.
- That's why it's important to talk to the person or team at your facility that is responsible for maintaining air filtration and ventilation if you have concerns about the ventilation in a room.

Make sure vents are not blocked.

- A blocked vent could prevent the ventilation system from functioning like it is supposed to.

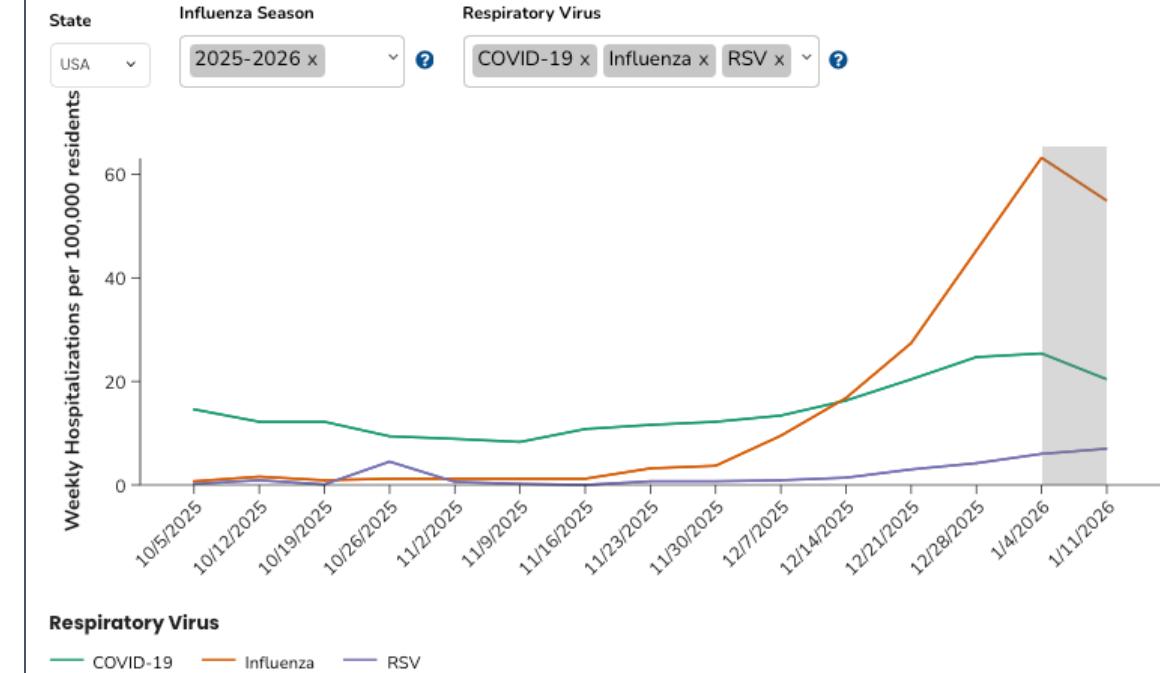
U.S. Department of
Health and Human Services
Centers for Disease
Control and Prevention

cdc.gov/ProjectFirstline
NC220-PLT-18921

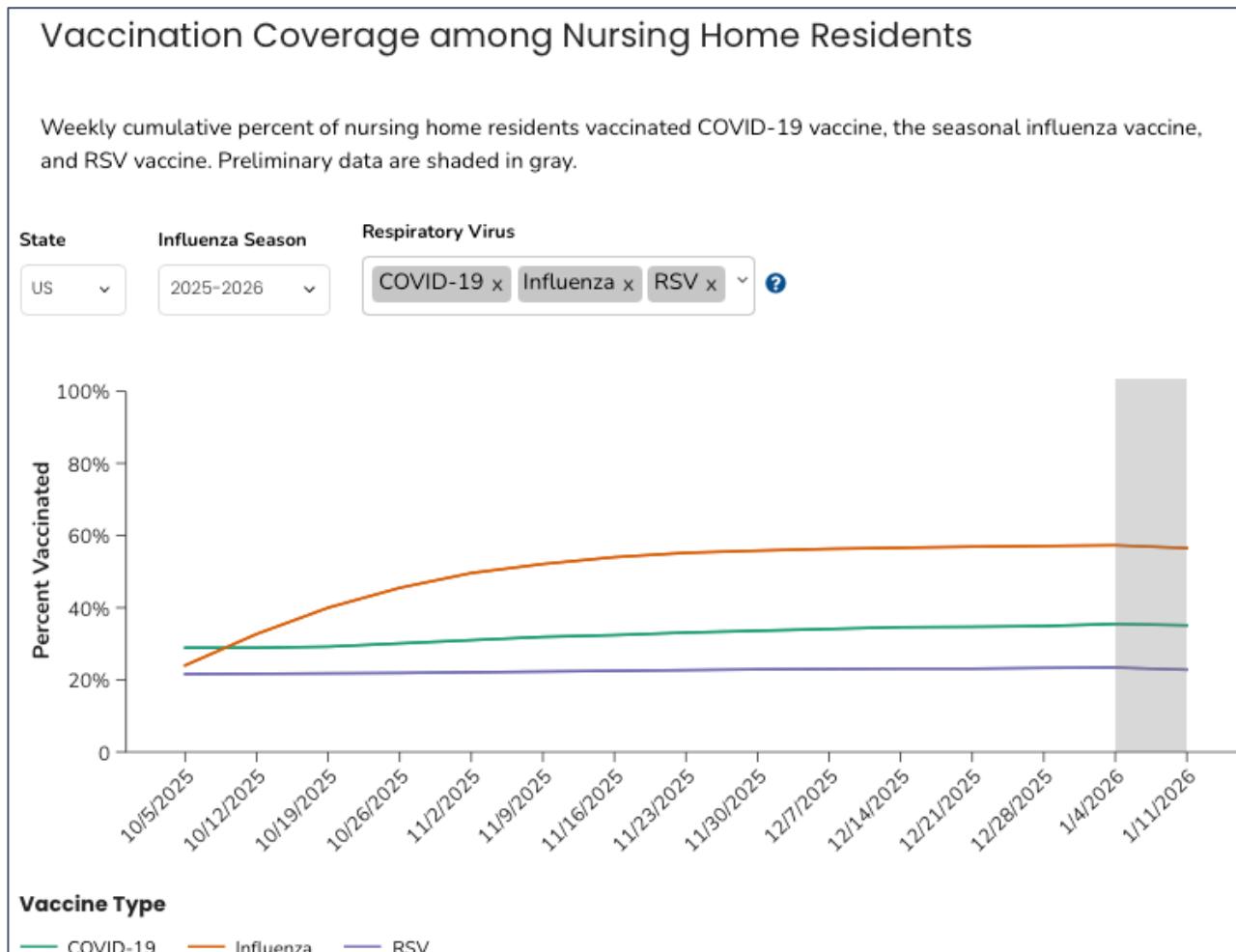

Also:

<https://doi.org/10.1016/j.jamda.2024.105195>

Case and Hospitalization Rates of Influenza, RSV, and COVID-19 in Nursing Home Residents 10/5/2025-1/11/2026 (15,000 nursing homes)


Case Rates per 100,000 Residents

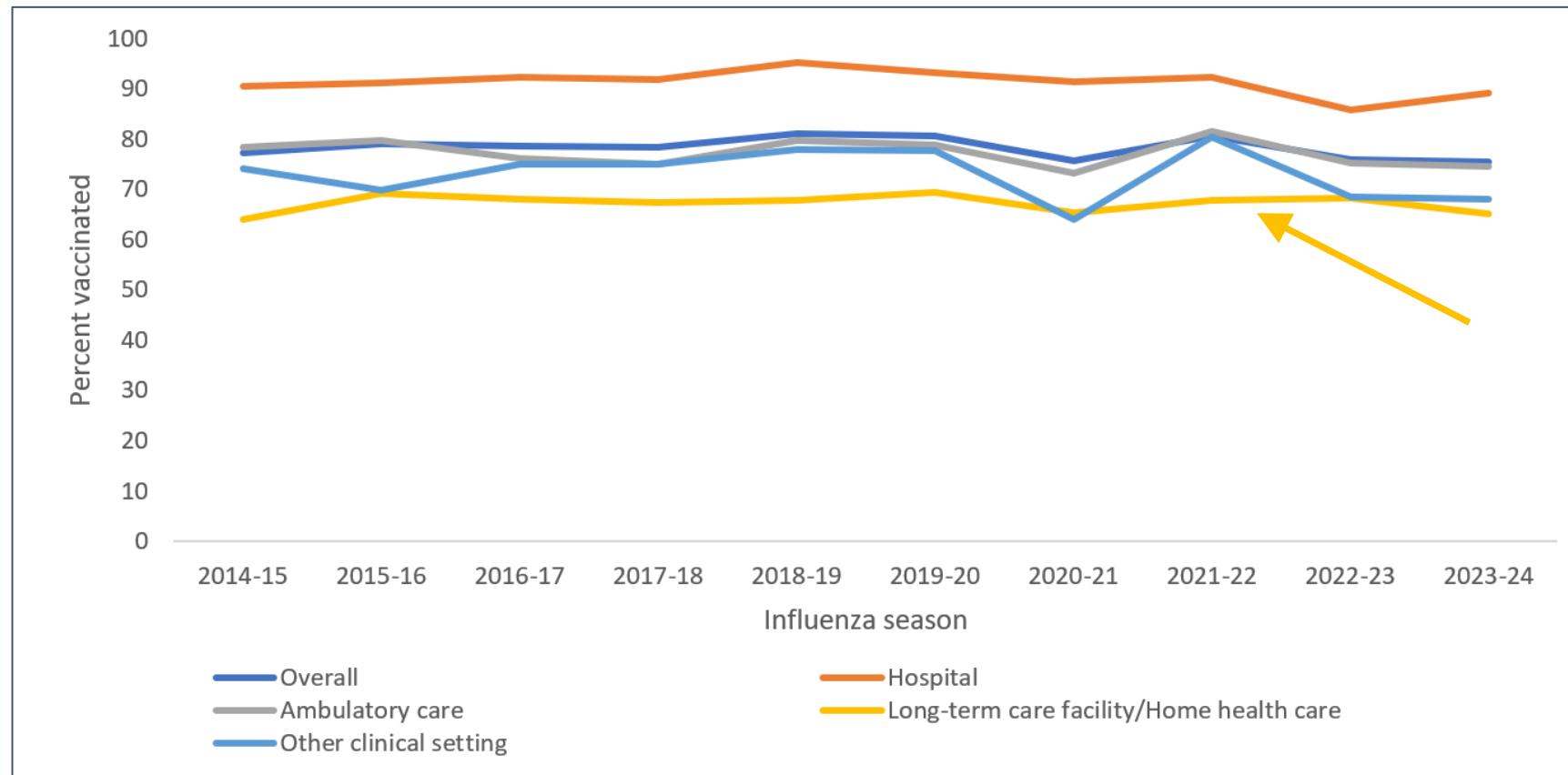
Weekly respiratory viral cases per 100,000 residents from CDC's National Healthcare Safety Network (NHSN). Preliminary data are shaded in gray.


Hospitalization Rates per 100,000 Nursing Home Residents

Weekly hospitalizations with a positive respiratory viral test per 100,000 residents from CDC's National Healthcare Safety Network (NHSN). Preliminary data are shaded in gray.

Vaccination Coverage with Influenza, RSV, and COVID-19 Vaccine

10/5/25-1/11/26: Nursing Home Residents vs. U.S. Overall



Vaccination in U.S. overall 10/11/25-1/3/26

	≥ 18 yr.	< 18 yr.
Flu	44.1%	42.5%
COVID-19	16.7%	6.9%
RSV	50-74 yr 32.5%	≥ 75 yr 41.4%

<https://www.cdc.gov/flu/weekly/coverage-adults.html>

Percentage of health care personnel who received influenza vaccination, by work setting — Internet panel surveys, United States, 2014-2015 through 2023-2024 influenza seasons

