# DATA MANAGEMENT PRINCIPLES

DEVERICK J. ANDERSON, MD, MPH, FSHEA, FIDSA

DIRECTOR, DUKE CENTER FOR ANTIMICROBIAL STEWARDSHIP AND INFECTION PREVENTION

SHEA ANTIMICROBIAL STEWARDSHIP RESEARCH WORKSHOP - NOVEMBER 2016



dicon.medicine.duke.edu dason.medicine.duke.edu



Duke Center for Antimicrobial Stewardship and Infection Prevention



Research grants – AHRQ, NIH/NIAID, CDC

Royalties – UpToDate



## Disclosures





Duke Center for Antimicrobial Stewardship and Infection Prevention

## Outline

### Background

### Quality control/Quality assurance (QC/QA)

- The details are important
- Throughout study execution
  - Planning
  - During
  - Post

### Two points of emphasis for today

- Internal validity
- Data validation

### Take home points



## Background

Data is <u>fundamental</u> in epidemiological and stewardship research - Cause and effect

Researchers faced with the inevitable question:DO I BELIEVE WHAT I SEE??

**ANSWER**: Depends on quality of data

Data journey mirrors the study journey

Caveat: no such thing as a perfect (error- or bias-free) study Goal: minimize error and bias to greatest extent possible



| PLANNING | DURING (CONDUCT) | POST |  |
|----------|------------------|------|--|
|          |                  |      |  |





## **Quality Control & Quality Assurance**

### Manufacturing

- QC inspect products at the end of the manufacturing line and remove substandard products
- QA improve all procedures to improve overall quality of the products
  - Focus on process not product

### Research

- QA practices to minimize systematic bias implemented before data collection
- QC practices to minimize bias during and after data collection (correct mistakes identified)

## Data management is a part of QC/QA procedures

Most literature related to clinical trials



Protocol development Documentation Personnel: training/certification Ethics (IRB)

|      | PLANNING                                                                                                | DURING (CONDUCT) | POST |
|------|---------------------------------------------------------------------------------------------------------|------------------|------|
| DATA | Data collection tools<br>Data validation planning<br>Data management planning<br>Pilot data collection? |                  |      |
|      |                                                                                                         |                  |      |



## Study Protocol

Outlines all the steps of the study process **before** the study begins

- QA/QC procedures
- Data management
- Statistical analysis plan

Time-consuming and burdensome But worth it

Use as the "map" for your journey





## Study Protocol

- Study objectives
- Outcomes
- Primary
- Secondary

## Study design

## Populations (participants)

- Inclusion
- Exclusion

### Variables

Data collection tool

Data collection strategy

Data validation steps

Statistical analysis planSample size and power



## Internal Validity (vs. External Validity)

- Internal validity how well was the study performed?
- Study execution
- Steps to limit bias/confounding
  - Systematic bias

### External validity – do results apply to other settings?

- Generalizability
- Repeat process (and get same results)



Schweizer et al. ICHE 2016; 37:1135.

#### QUALITY ASSURANCE

QUALITY CONTROL

| Protocol development<br>Documentation<br>Personnel: training/certification<br>Ethics (IRB)              | Documentation<br>Personnel: training/certification                              | Writing                  |
|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------|
| PLANNING                                                                                                | DURING (CONDUCT)                                                                | POST                     |
| Data collection tools<br>Data validation planning<br>Data management planning<br>Pilot data collection? | Data management plan<br>Data collection<br>Data validation<br>Interim analyses? | Analysis<br>Data storage |

DATA



## Data Management Plan

- How do you turn "raw" data to analyzable, "valid" data?
- Errors can (and do occur) at every step
- Primary data
- Data extraction
  - Electronic data transfer
  - Transcription/entry into a database
- Processing (coding), storage
- Analysis



## Data Management Plan - Tips

### Identify data sources

- Familiarize yourself with type(s) of data available
- Manual collection
- Backup ALL raw data

### Create data dictionary

Train data abstractors

Develop data collection tools

### Develop electronic database

- Data entry predefined choices
  - MINIMIZE FREE TEXT
- Relational need identifiers to connect databases
  - Unique to subject but present in all databases

### Pilot tools and methods

Modify

Collect data

Clean and validate data

Outline security steps



## Data Dictionary





Duke Center for Antimicrobial Stewardship and Infection Prevention





Duke Center for Antimicrobial Stewardship and Infection Prevention https://sites.google.com/a/apaches.k12.in.us/mr-evans-science-website/accuracy-vs-precision

## Data Validation

Multistep process to ensure data collected represent "truth" • Improve "accuracy"

Approach depends on type of data

Requires some type of "gold standard"

Commonly used strategies for manual abstraction:

- Multiple reviewers
- Random sample
- Key variables
- Check completeness of data collection



## Data Validation - Datasets

Large datasets still need to undergo validation

Can use some of the same strategies

Completeness of data

### Additional strategies

- All variables present
- Error checking ("out of range")
  - Dates
- New variables (drug names?)

### Think about perspective

- Review of data already in dataset confirms that what you have may be accurate
- But, doesn't confirm that ALL data are present

KEY POINT: these datasets weren't created for your research project!





## **Data Validation - Datasets**

#### DATASET

#### RANDOM PATIENT SAMPLE

|                             |              | On            |             |         |                       |                         |              | On            |             |         |                       |
|-----------------------------|--------------|---------------|-------------|---------|-----------------------|-------------------------|--------------|---------------|-------------|---------|-----------------------|
| Drug                        | On<br>Report | Report<br>NF- | Not<br>Used | Missing | Route<br>Validation   | Drug                    | On<br>Report | Report<br>NF- | Not<br>Used | Missing | Route<br>Validation   |
| Acyclovir                   |              |               |             |         | IV Y/N<br>PO/VT Y/N   | Fidaxomicin             |              |               |             |         |                       |
| Amantadine                  |              |               |             |         |                       | Fluconazole             |              |               |             |         |                       |
| Amikacin                    |              |               |             |         | IV Y/N<br>Inhaled Y/N | Foscarnet               |              |               |             |         |                       |
| Amoxicillin                 |              |               |             |         |                       | Fosfomycin              |              |               |             |         |                       |
| Amoxicillin/<br>Clavulanate |              |               |             |         |                       | Ganciclovir             |              |               |             |         |                       |
| Amphotericin B              |              |               |             |         |                       | Gemifloxacin            |              |               |             |         |                       |
| Amphotericin B<br>liposomal |              |               |             |         |                       | Gentamicin              |              |               |             |         | IV Y/N<br>Inhaled Y/N |
| Ampicillin                  |              |               |             |         |                       | Imipenem/<br>Cilastatin |              |               |             |         |                       |
|                             |              |               |             | _       |                       |                         |              | _             | _           | _       |                       |

#### Table 3. Antimicrobial Agents and Routes Captured in Sample eMAR File.

#### Table 4. Manual Validation of Patient Records as compared to sample eMAR file.

|    | Patient MRN | Date(s) | Unit | Comments |
|----|-------------|---------|------|----------|
| 1  |             |         |      |          |
| 2  |             |         |      |          |
| 3  |             |         |      |          |
| 4  |             |         |      |          |
| 5  |             |         |      |          |
| 6  |             |         |      |          |
| 7  |             |         |      |          |
| 8  |             |         |      |          |
| 9  |             |         |      |          |
| 10 |             |         |      |          |
| 11 |             |         |      |          |
| 12 |             |         |      |          |
| 13 |             |         |      |          |
| 14 |             |         |      |          |







Duke Center for Antimicrobial Stewardship and Infection Prevention https://sites.google.com/a/apaches.k12.in.us/mr-evans-science-website/accuracy-vs-precision





https://sites.google.com/a/apaches.k12.in.us/mr-evans-science-website/accuracy-vs-precision

## Beware the Preexisting Database

Key consideration in study design – prospective vs. retrospective
Retrospective study designs more prone to various types of bias

### Some advantages

- Decrease time/effort
- Availability
- Limited/de-identified

Just because data exist, doesn't mean should be used for your study

- Incomplete
- Not validated



Drees et al. ICHE 2016; 37:1278.

## Preexisting Data – Surveillance Data

Statewide review of CLABSI surveillance data in Connecticut

Trained reviewers from DPH acted as "gold standard"

Reviewed positive blood cultures from 30 hospitals

Results: >50% underreporting of CLABSI

|                  | CT hospital reports to the National<br>Healthcare Safety Network |           |       |  |  |
|------------------|------------------------------------------------------------------|-----------|-------|--|--|
| CT DPH reviewers | CLABSI                                                           | No-CLASBI | Total |  |  |
| CLABSI           | 23                                                               | 25        | 48    |  |  |
| No-CLABSI        | 4                                                                | 424       | 428   |  |  |
| Total            | 27                                                               | 449       | 476   |  |  |



Backman et al. AJIC 2010;38:832-8.

## Preexisting Data – Surveillance Data

Similar study in Oregon

Largely same results, but variation across hospitals

| Change in CLABSI incidence after validation | No. (%) <sup>a</sup> of<br>hospitals |
|---------------------------------------------|--------------------------------------|
| Decreased by 0.70                           | 1 (2)                                |
| No change                                   | 33 (75) <sup>b</sup>                 |
| Increased by 0.01-0.50                      | 2 (5)                                |
| Increased by 0.51-1.00                      | 2 (5)                                |
| Increased by more than 1.00                 | 6 (14) <sup>c</sup>                  |
| Total                                       | 44 (100)                             |



Oh et al. ICHE 2012;33:439.

## Preexisting Data – Billing Data

## Review of CLABSI data from 3 hospitals

Surveillance (IC) vs. billing (ICD-9, used for HAC)

| Variable            | No. (%) of cases | Sensitivity, % | PPV |
|---------------------|------------------|----------------|-----|
| Overall $(n = 890)$ |                  | 14             | 55  |
| Concordant          | 112 (13)         |                |     |
| IC only             | 686 (77)         |                |     |
| HAC only            | 92 (10)          |                |     |



Moehring et al. ICHE 2013;34:238-44.

## Preexisting Data – Administrative Data

Pharmacy administrative databases different from administration databases (eMAR)

Cost/purchasing

### 32 units in Canada

Compared DDD from pharmacy system to DDD from eMAR



Dalton et al. ICHE 2015;36(6):688-94.

## Pharmacy DDD – eMAR DDD

Average differences:

24% for PO abx 57% for IV abx



Duke Center for Antimicrobial Stewardship and Infection Prevention

Dalton et al. ICHE 2015;36(6):688-94.

## Beware the Preexisting Database

Don't fit your question to the data, find data that fit your question

# Bottom Line: Don't avoid retrospective research with preexisting dataset, KNOW LIMITATIONS

- Data inaccuracies ("noise") stable over time?
- Know strategies to improve quality





# HYPOTHETICAL EXAMPLE



dicon.medicine.duke.edu dason.medicine.duke.edu



Duke Center for Antimicrobial Stewardship and Infection Prevention

## Stewardship Hypothetical Example

Objective: to determine if restriction vs. post-Rx review leads to better utilization of antimicrobial therapy

### Protocol development

- Define interventions
- Eligible patients
- Location
- Statistician



## Example – Data Management

Data source: \_

Obtain utilization data from eMAR

• OTHER?

Save raw file

Data dictionary – Key variable:

Electronic database: \_

Need identifiers to link datasets

Data validation strategy: \_\_\_\_

Data collection:



## Special Scenario – Multicenter Research

Multicenter research ultimately preferred

Increases external validity

### Complexity of data management increased

Number of centers = number of different ways a process might happen

## Data management plan developed centrally and distributed to participating centers

QA/QC

- Participating centers must perform local QA/QC
- Central location likely adds an additional layer of QA/QC
  - Data checks
  - Data feedback/reports for participating centers

Central location must have a system to receive data from all participating centers



## Take Home Points

Data management involves all the stops on the data voyage for your project DURING (CONDUCT) POST

### Component of QA/QC

Practical tips to increase internal validity/minimize bias:

- Develop a study protocol
- Write a data management plan
- Perform data validation
- Pay attention to the details



## **SHEA White Paper Series**

RESEARCH METHODS IN HEALTHCARE EPIDEMIOLOGY AND ANTIMICROBIAL STEWARDSHIP

### RCT

Anderson et al. ICHE 2016;37:629.

### Quasi-experimental

Schweizer et al. ICHE 2016;37:1135.

### **Observational studies**

Snyder et al. ICHE 2016;37:1141.

Mathematical modelingBarnes et al. ICHE 2016;37:1265.

Survey and qualitative research Safdar et al. ICHE 2016;37:1272.

Administrative and surveillance databases

Drees et al. ICHE 2016;37:1278.





Whitney et al. *Epidemiol Rev* 1998;20:71-80.

Neta et al. Quality Control and Good Epidemiological Practice. In: <u>Handbook of Epidemiology</u>, 2<sup>nd</sup> Ed. ED: Ahrens and Pigeot.



