Defining Exposures and Outcomes: Inpatient Considerations

Pranita D. Tamma, MD, MHS Assistant Professor, Pediatrics Director, Pediatric Antibiotic Stewardship Program Johns Hopkins University School of Medicine

Disclosures

• I am not an epidemiologist.

Something the patient was exposed to [antibiotic, microorganism]

Individual attribute [Immunocompromised]

Intervention [Antibiotic time-out tool]

An event under consideration [Length of hospital stay, mortality]

Confounders

- Variables associated with the exposure of interest and a potential cause of the outcome of interest
 - Should not be an intermediate step in the causal pathway
- Can lead to bias that distorts the magnitude of the relationship between the exposure and outcome

Study question: Do patients with gram-negative bacteremia who receive combination antibiotic therapy (β-lactam and aminoglycoside) have an improved odds of 28-day survival?

Study question: Do patients with gram-negative bacteremia who receive combination antibiotic therapy (β-lactam and aminoglycoside) have an improved odds of 28-day survival?

You Need a Project for Your PGY-2 Resident...

- The optimal duration of antibiotic therapy for gram-negative bacteremia remains unclear
- The IDSA guidelines suggest a duration between 7-14 days
- Some observational studies such 7 days and 14 days of therapy have equivalent outcomes
- Prolonged antibiotic exposure has been associated with adverse drug events, emergence of antibiotic resistance, *Clostridium difficile* infections, etc.

What is the Best Approach to Evaluate this Question?

- Quasi-experimental study
 - Will phone calls from the stewardship team at the time blood cultures result reduce the duration of antibiotic therapy for gramnegative bacteremia?
- Cohort study
 - Does decreasing the duration of antibiotic therapy for gramnegative bacteremia increase 28-day mortality?

Receipt of phone call from stewardship team

Duration of antibiotic therapy

Hypothesis: A phone call from the stewardship team to prescribers discussing duration of therapy every time a gram-negative organism is isolated from the bloodstream will reduce the duration of antibiotic therapy prescribed.

When Should I Consider a Quasi-Experimental Study?

- Population characteristics should generally be consistent over time
- Intervention should be uniformly applied
- Need a defined implementation start date
- Normalize count data
 - e.g., days of antibiotic therapy per 1,000 patient-days, *C. difficile* infection rates per 100 hospital admissions, etc.
- Select outcome measurable across units of time using a consistent approach
- Control group optional
 - e.g., duration of antibiotic use for another syndrome, duration of antibiotic use in a non-intervention unit, duration of antibiotic use for gram-positive agents, etc.

Shardell M, et al. Clin Infec Dis 2007; 45:901-7.

Interrupted-Time Series Analysis

Drawbacks:

- Requires prolonged periods of time for evaluation
- Changes in other interventions or outcome definitions over time can introduce bias

Accounts for pre-existing trends

Hypothesis: Reducing the median duration of antibiotic therapy for gram-negative bacteremia will not increase 28-day mortality.

Continuous Versus Categorical Exposure?

Learning When to Be Discrete: Continuous vs. Categorical Variables

Continuous

• For every additional year of age, patients have twice the odds of developing colon cancer.

Categorical

 Patients ≥50 years of age have twice the odds of developing colon cancer compared to younger patients.

Outcome

What Outcomes Appeal to Clinicians?

- Most clinicians want to see improvements in patient-centered outcomes
- They want to know that the status quo is harming patients, necessitating a change in practice
- Or, a change in treatment practices will not worsen clinical outcomes
- Ideally, a stewardship intervention will result in both of these

A Proposed Solution for Indiscriminate Antibiotic Prescription

NINA SINGH, PAUL ROGERS, CHARLES W. ATWOOD, MARILYN M. WAGENER, and VICTOR L. YU

- Components of Clinical Pulmonary Infection Score (CPIS)
 - Temperature
 - Peripheral white blood cell count
 - Tracheal sections
 - Oxygenation
 - Progression of pulmonary infiltrate
 - Culture of tracheal aspirate
- A score >6 is suggestive of pneumonia

Singh N, et al. Am J Respir Crit Care Med 2000;162:505-11.

Median

antibiotic

duration:

3 days

A Proposed Solution for Indiscriminate Antibiotic Prescription

NINA SINGH, PAUL ROGERS, CHARLES W. ATWOOD, MARILYN M. WAGENER, and VICTOR L. YU

Singh N et al. Am J Respir Crit Care Med 2000;162:505-11.

A Proposed Solution for Indiscriminate Antibiotic Prescription

NINA SINGH, PAUL ROGERS, CHARLES W. ATWOOD, MARILYN M. WAGENER, and VICTOR L. YU

Singh N et al. Am J Respir Crit Care Med 2000;162:505-11.

A Proposed Solution for Indiscriminate Antibiotic Prescription

NINA SINGH, PAUL ROGERS, CHARLES W. ATWOOD, MARILYN M. WAGENER, and VICTOR L. YU

Singh N et al. Am J Respir Crit Care Med 2000;162:505-11.

Why Was this Study Successful?

- It focused on a single diagnosis
- The goal of the intervention focused on improving patient outcomes and not decreasing antibiotic use
- If focused on a diagnosis with good evidence to support the treatment recommendations
- It involved multiple opportunities for interventions along the way that could be scalable to the comfort level of the treating clinician
- The treating clinician ultimately made all treatment decisions
- It showed that the stewardship outcome was safe
 - No increased mortality or increased ICU length of stay in the intervention group
- The "harm" caused by the status quo impacted the patients in the study
 - Decreased subsequent antibiotic resistant organisms in the intervention group

Process Measures

- Antibiotic usage
- Antibiotic costs

Clinical Measures

- *C. difficile* infections
- Central-line complications
- End-organ toxicity
- Mortality
- Length of hospital stay
- Infection recurrence
- Antibiotic resistance

Balancing Measures

- Hospital readmissions
- Delays in patient discharges

Selecting Meaningful Outcomes

Harm with the Status Quo

- Antibiotic resistance
 - Issues with antibiograms
 - Time consuming to evaluate patient-level resistance
- Clostridium difficile
 - Lapses in infection control
 - Relatively rare outcome
 - May occur months after intervention
 - Higher associations with certain agents
 - Confounding due to overtesting
- PICC complications
 - Infectious, thrombotic, mechanical
- End-organ toxicity
 - Except for acute kidney injury, relatively rare outcome

No Harm with the Intervention

- Mortality
 - Relatively rare outcome especially attributable mortality
- Length of stay
 - Most useful for studies where promoting IV to oral switch or decreased antibiotic duration
- Infection recurrence
- Hospital readmission

Impact of an Antimicrobial Stewardship Intervention on Shortening the Duration of Therapy for Community-Acquired Pneumonia

- Goal
 - Reduce duration of therapy from baseline median of 10 days to 5 days of antibiotics for CAP
- Approach
 - Assess knowledge and behavior with a survey of medicine housestaff
 - Revision of treatment guidelines with involvement of medicine housestaff and simplification of recommendations
 - Educational lectures reviewing evidence for CAP recommendations
 - Direct, real-time discussion of management with housestaff
 - Feedback results to housestaff

Avdic E, et al Clin Infect Dis 2012;54:1581.

Results

	Baseline n=56	Intervention n=63	P-value
Median duration of therapy	10 days	7 days	<0.001
30-day readmissions	15%	8%	0.22
C. difficile infections	5%	2%	0.28

Patient characteristics similar between the two periods

Avdic E, et al Clin Infect Dis 2012;54:1581.

Sustained Impact of an Antibiotic Stewardship Intervention for Community-Acquired Pneumonia

INFECTION CONTROL & HOSPITAL EPIDEMIOLOGY

	Baseline n=56	Intervention n=63	3 years later n=72
Median duration of therapy	10 days	7 days	7 days
30-day readmissions	15%	8%	8%
C. difficile infections	5%	2%	1%

Patients characteristics similar between the three periods

Li DX, et al. Infec Cont Hosp Epidemiol 2016;8:1-4.

Back to Our Study...

Hypothesis: A short-course of antibiotic therapy for gram-negative bacteremia will not increase 28-day mortality.

Two Patients with *E. coli* Bacteremia....

10 days of antibiotics

Age = 75 years Renal transplant Intra-abdominal source Intensive care unit Pitt bacteremia score = 6 14 days of antibiotics

Age = 37 years Otherwise healthy Urinary source General ward Pitt bacteremia score = 1

Assessing Covariate Balance

	Short-Course	Prolonged-Course	P-value
	n=183	n=501	
Age (median, IQR)	57 (43-68)	59 (48-68)	0.43
Male (n, %)	90 (49%)	341 (68%)	<0.01
Race/Ethnicity (n, %)			
Hispanic	10 (5%)	20 (4%)	0.40
White	70 (38%)	271 (54%)	<0.01
Black	93 (51%)	190 (38%)	<0.01
Asian	9 (5%)	15 (3%)	0.24

Assessing Covariate Balance

	Short-Course	Prolonged-Course	P-value
	n=183	n=501	
ICU on day 1 (n, %)	53 (29%)	215 (43%)	<0.01
Pitt bacteremia score on day	2 (1-3)	2 (2-4)	0.02
1 (median, IQR)			
Source of bacteremia (n, %)			
Pneumonia	11 (6%)	50 (10%)	0.12
Skin and soft tissue	7 (4%)	40 (8%)	0.06
Urinary tract	97 (53%)	115 (23%)	<0.01
Biliary	16 (9%)	70 (14%)	0.06
Intra-abdominal	22 (12%)	130 (26%)	<0.01
Catheter-associated	27 (15%)	100 (20%)	0.14
Osteoarticular	2 (1%)	10 (2%)	0.53

Assessing Covariate Balance

	Short-Course	Prolonged-Course	P-value
	n=183	n=501	
End-Stage Liver Disease	21 (12%)	62 (12%)	0.79
End-Stage Renal Disease	34 (19%)	51 (10%)	<0.01
Diabetes	25 (6%)	57 (10%)	0.43
Human Immunodeficiency Virus	21 (11%)	15 (3%)	<0.01
Chemotherapy within 6 months	38 (21%)	240 (48%)	<0.01
Immunomodulatory therapy \leq 30 d	21 (5%)	35 (7%)	0.37
Solid organ transplant	26 (14%)	99 (20%)	<0.01
Bone marrow transplant ≤ 12 mo	13 (3%)	25 (5%)	0.35
ANC 0-200 cells/ml	4 (1%)	40 (8%)	<0.01

Addressing Confounding by Indication

- Impact of an intervention best assessed by randomizing treatment assignments to ensure patients are similar in the short-course and prolonged-course groups
- Randomization is not possible in observational studies so adjustment for other differences is necessary to obtain valid estimates of the associations between the exposure and outcome
- Consider multivariable regression analysis or propensity score methods
 - Regression analysis determines how the estimate of the outcome changes when a variable changes, while the other variables are held constant

Using Propensity Score Methods to Account for Differences in the Exposed and Unexposed

- Goal is to develop short-course and prolonged-course groups that are similar in all characteristics expect the duration of therapy prescribed
- The propensity score is the probability a patient would receive shortcourse therapy, based on characteristics of the patient, organism, and treating clinician
- Generally estimated using multivariable logistic regression, in which patient characteristics are the predictors to determine the odds of being assigned to the short-course group
- These probabilities are estimated (ranging from 0 to 1) for each patient in the study population
- These probabilities- the propensity scores- are then used to adjust for differences between the short-course and prolonged-course groups
 - A standardized bias >0.10 represent imbalance between the distribution of covariates

Propensity-Score Matching

- Matching patients who received short-course therapy and those that did not based on similar or identical propensity scores
 - Most commonly 1:1 nearest neighbor matching (can do 2:1, 3:1,..)
 - Can do some exact matching
 - Can do matching with replacement or without replacement: if enough good matches, match without replacement
 - Can impose a "caliper" to limit matches to be within some range of propensity score values (commonly 0.25 propensity score standard deviations)
- Generally reduces your sample size as patients without a match are excluded
 - Need a reasonably large cohort of patients

Residual confounding likely will always still persist!

Jitter Plot

Propensity Score

Propensity-Score Stratification

- Separating study participants into distinct strata with similar propensity score values
 - Generally 5 strata used
- The association between short-course therapy and 28-day mortality is estimated within each stratum or pooled across strata to provide an estimate of this relationship
- A challenge with this approach may be having enough short-course and prolonged-course people within each strata

Propensity Score Weighting

- Propensity scores are used to calculate weights for each individual who are "down-weighted" or "up-weighted" to create a contrived population of short-course people who look similar to the prolonged-course group
 - When someone prescribed short-course therapy looks like the patients who received prolonged-course therapy, we clone that patient in the data (upweighting)
 - Someone who is already over-represented in the short-course group gets reduced in influence (downweighting)
 - A new "pseudo-population" of short-course people who look much more like the prolonged-course group is developed
- Does not sacrifice people who cannot be matched; everyone in cohort is included

Steps in Propensity Score Matching

1- Identify your cohort of patients with gram-negative bacteremia

2- Define your exposure and outcome

3- Select covariates on which to match (i.e., what variables might influence the decision to prescribe short-course therapy?)

4- Estimate the propensity score generally using logistic regression (the outcome is the odds of receiving short-course therapy and the exposures are the variables identified in #3)

5- Run the diagnostics to find the best matches for patients

6- Check for appropriate balance (covariate distribution) between the two propensity-score matched groups

7- Determine the odds ratio for 28-day mortality on the propensity-score matched sample (less prone to cheating)

Assessing Covariate Balance AFTER Matching

	Short-Course	Prolonged-Course	Standardized
	n=170	n=170	Bias
Age (median, IQR)	59 (45-69)	59 (48-68)	0.07
Male (n, %)	100 (60%)	113 (68%)	0.16
Race/Ethnicity (n, %)			
Hispanic	8 (5%)	7 (4%)	0.06
White	74 (44%)	90 (54%)	0.20
Black	76 (46%)	63 (38%)	0.16
Asian	6 (4%)	5 (3%)	0.03

Assessing Covariate Balance AFTER Matching

	Short-Course	Prolonged-Course	Standardized
	n=170	n=170	Bias
ICU on day 1 (n, %)	60 (36%)	72 (43%)	0.15
Pitt bacteremia score on day 1	2 (1-3)	2 (1-4)	0.05
Source of bacteremia (n, %)			
Pneumonia	16 (10%)	16 (10%)	<0.01
Skin and soft tissue	10 (6%)	13 (8%)	0.07
Urinary tract	52 (31%)	39 (23%)	0.16
Biliary	22 (13%)	23 (14%)	0.02
Intra-abdominal	29 (17%)	43 (26%)	0.19
Catheter-associated	38 (23%)	33 (20%)	0.08
Osteoarticular	3 (2%)	3 (2%)	<0.01

Assessing Covariate Balance AFTER Matching

	Short-	Prolonged-	Standardized
	Course	Course	Bias
	n=170	n=170	
End-Stage Liver Disease	13 (8%)	18 (11%)	0.11
End-Stage Renal Disease	15 (9%)	15 (9%)	0.001
Diabetes	16 (10%)	16 (10%)	0.001
Human Immunodeficiency Virus	8 (5%)	5 (3%)	0.09
Chemotherapy within 6 months	34 (20%)	48 (29%)	0.20
Immunomodulatory therapy \leq 30 d	10 (6%)	12 (7%)	0.05
Solid organ transplant	23 (14%)	23 (14%)	0.001
Bone marrow transplant \leq 12 mo	6 (4%)	8 (5%)	0.06
ANC 0-200 cells/ml	2 (1%)	3 (2%)	0.05

Outcomes

	Short-Course n=170	Prolonged-Course n=170	P-value
28-day all-cause mortality	10%	10%	0.97
C. difficile infections	2%	2%	0.87
Subsequent MDRGN infections	4%	7%	0.09

Summary

- Always define your question, primary exposure, primary outcome, and potential confounders up front
 - Consider focusing on an infectious diseases syndrome
 - Ask clinicians what outcomes data are important to them
 - Feed back data to providers
 - Publish your findings to guide others and to give the intervention credibility
- Know when to ask for help